Description
Exercise 8-2 from Montgomery – Runger. Third Edition. Page 256.
Exercise 8-2 from Montgomery – Runger. Fifth Edition. Page 260.
Exercise 8-2 from Montgomery – Runger. Sixth Edition. Page 281.
Para una población normal con varianza conocida σ2:
a) ¿Qué valor de zα/2 en la ecuación \( \displaystyle \overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\) da un 98% de confianza?
b) ¿Qué valor de zα/2 en la ecuación \( \displaystyle \overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\) da un 80% de confianza?
c) ¿Qué valor de zα/2 en la ecuación \( \displaystyle \overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\) da un 75% de confianza?
For a normal population with known variance σ2:
a) What value of zα/2 in Equation \( \displaystyle \overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\) gives 98% confidence?
b) What value of zα/2 in Equation \( \displaystyle \overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\) gives 80% confidence?
c) What value of zα/2 in Equation \( \displaystyle \overline{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\leq\mu\leq\overline{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\) gives 75% confidence?
Reviews
There are no reviews yet.