Ejemplo del Mario Triola. Décima Edición. Página 341.

Pulsos cardiacos de mujeres. Para la muestra de pulsos cardiacos de mujeres en el conjunto de datos 1 del apéndice B, tenemos n = 40 y $\overline{X} = 76.3$, y la muestra es aleatoria simple. Suponga que sabemos que σ es 12.5.

Utilice un nivel de confianza del 95% y calcule lo siguiente:

- a) El margen de error E.
- b) El intervalo de confianza para μ .

Solución.

Variable: Pulso cardiaco de mujeres.

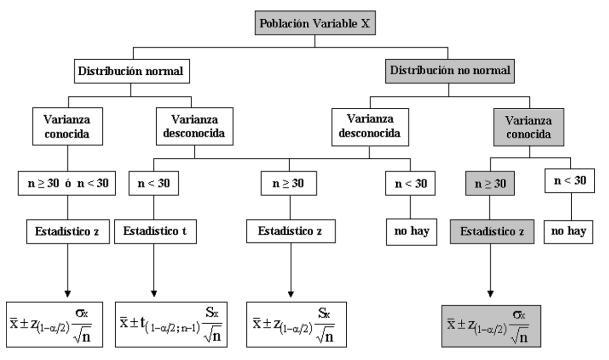
Tamaño de la muestra: n = 40

Media muestral: $\overline{X} = 76.3$

Desviación estándar poblacional: $\sigma = 12.5$

Nivel de confianza: $1 - \alpha = 0.95$

Distribución a utilizar.



Margen de error.

$$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

Determinación de $z_{\alpha/2}$.

Nivel de confianza: $1 - \alpha = 0.95$.

$$1 - \alpha = 0.95$$

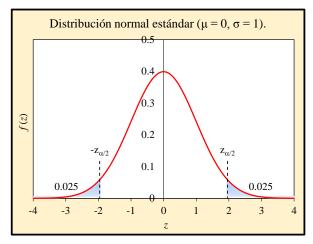
$$\alpha = 1 - 0.95$$

$$\alpha = 0.05$$

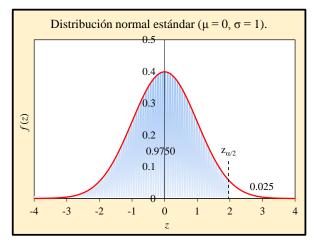
$$\frac{\alpha}{2} = \frac{0.05}{2}$$

$$\frac{\alpha}{2} = 0.025$$

 $z_{\alpha/2} = z_{0.025}$ es el valor de z que tiene un área de 0.025 a la derecha.



El área acumulada a la izquierda es 1 - 0.025 = 0.9750.



Técnicamente, el valor de z se determina como $P(z \le z_{\alpha/2}) = 0.9750$.

En palabras, z será el valor que corresponda a la probabilidad de 0.9750.

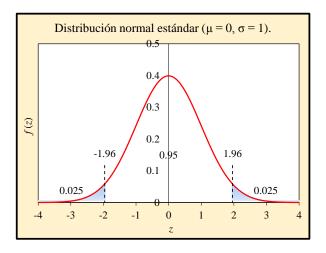
Para calcular este valor, se reproduce parte de la tabla de la normal estándar presentada en el apéndice del libro.

Se busca el valor de 0.9750 y se identifica el valor z que se relaciona con esta probabilidad.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857

Como se puede observar, cuando la probabilidad es 0.9750, el valor de z es igual a 1.96.

$$z_{\alpha/2} = 1.96$$



Margen de error.

$$E = 1.96 \times \frac{12.5}{\sqrt{40}}$$

$$E = 1.96 \times \frac{12.5}{6.32455532}$$

$$E = 1.96 \times 1.9764$$

$$E = 3.9$$

b) El intervalo de confianza para la media puede expresarse en la forma siguiente:

$$\mu$$
: $\overline{X} \pm E$, con $E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ (Margen de error)

Intervalo de confianza.

$$\mu$$
: 76.3 ± 3.9

Límite inferior de confianza.

$$LIC = 76.3 - 3.9 = 72.4$$

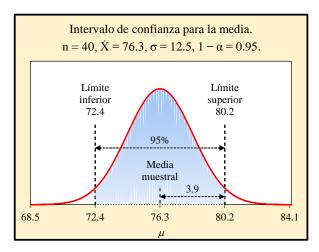
Límite superior de confianza.

$$LSC = 76.3 + 3.9 = 80.2$$

Intervalo de confianza.

$$72.4 \le \mu \le 80.2$$

Gráfico del intervalo de confianza.



Interpretación práctica del intervalo de confianza.

Tenemos una confianza del 95% de que el intervalo de 72.4 a 80.2 contiene el valor verdadero del pulso cardiaco promedio de mujeres μ .

Interpretación probabilística del intervalo de confianza.

Si seleccionáramos diferentes muestras aleatorias y construyéramos los correspondientes intervalos de confianza, el 95% contendría el valor verdadero del pulso cardiaco promedio de mujeres μ .

Este ejercicio forma parte de una serie de ejercicios resueltos paso a paso acerca del tema Estimación de Parámetros e Intervalos de Confianza, perteneciente a la asignatura Estadística. El acceso a estos archivos está disponible a través de:

http://www.tutoruniversitario.com/

Si Usted requiere la resolución de ejercicios adicionales acerca de este tema o asignatura, contáctenos a través del WhatsApp disponible en nuestra página web.