
<u>Ejemplo 1.74. Ejemplo 3.7 del Hibbeler. Décima Edición. Página 102. Ejemplo 3.7 del Hibbeler. Decimosegunda Edición. Página 106.</u>

Determine la fuerza desarrollada en cada cable usado para soportar el cajón de 40 lb que se muestra en la figura.

Solución.

En la figura siguiente se muestran las fuerzas involucradas:

Condición de equilibrio: $\sum F = 0$

$$T_{AB} + T_{AC} + T_{AD} + W = 0$$

Fuerzas individuales.

$$T_{AD} = \mid T_{AD} \mid i$$

$$W = (-40 k)$$
 lb

Fuerza en el cable AB.

$$T_{AB} = \| T_{AB} \| u_{AB}$$

 u_{AB} : vector unitario de la dirección de la fuerza.

Coordenadas del punto A: A (0,0,0)

Coordenadas del punto B: B (-3, -4, 8)

Vector AB.

$$AB = (-3 - 0) i + (-4 - 0) j + (8 - 0) k$$

$$AB = -3i - 4j + 8k$$

Módulo del vector AB:

$$||AB|| = \sqrt{(-3)^2 + (-4)^2 + (8)^2}$$

$$||AB|| = \sqrt{9 + 16 + 64}$$

$$||AB|| = \sqrt{89}$$

$$||AB|| = 9.4339$$

$$u_{AB} = \frac{-3i - 4j + 8k}{9.4339}$$

$$u_{AB} = -0.3180 \ i - 0.4240 \ j + 0.8480 \ k$$

$$T_{AB} = ||T_{AB}|| (-0.3180i + 0.4240j + 0.8480k)$$

$$T_{AB} = -0.3180 \| T_{AB} \| i - 0.4240 \| T_{AB} \| j + 0.8480 \| T_{AB} \| k$$

Fuerza en el cable AC.

$$T_{AC} = \parallel T_{AC} \parallel u_{AC}$$

 u_{AC} : vector unitario de la dirección de la fuerza.

Coordenadas del punto A: A(0,0,0)

Coordenadas del punto C: C(-3, 4, 8)

Vector AC.

$$AC = (-3 - 0) i + (4 - 0) j + (8 - 0) k$$

$$AC = -3i + 4j + 8k$$

Módulo del vector AC:

$$||AC|| = \sqrt{(-3)^2 + (4)^2 + (8)^2}$$

$$||AC|| = \sqrt{9 + 16 + 64}$$

$$||AC|| = \sqrt{89}$$

$$||AC|| = 9.4339$$

$$u_{AC} = \frac{-3i + 4j + 8k}{9.4339}$$

$$u_{AC} = -0.3180 \ i + 0.4240 \ j + 0.8480 \ k$$

$$T_{AC} = \left\| T_{AC} \right\| (-0.3180i + 0.4240j + 0.8480k)$$

$$T_{\scriptscriptstyle AC} = -0.3180 \, \| \, T_{\scriptscriptstyle AC} \, \| i + 0.4240 \, \| \, T_{\scriptscriptstyle AC} \, \| \, j + 0.8480 \, \| \, T_{\scriptscriptstyle AC} \, \| k$$

Al sustituir las fuerzas en la condición de equilibrio:

Fuerza
$$i$$
 j k T_{AB} : $-0.3180 \parallel T_{AB} \parallel -0.4240 \parallel T_{AB} \parallel +0.8480 \parallel T_{AB} \parallel$ T_{AC} : $-0.3180 \parallel T_{AC} \parallel +0.4240 \parallel T_{AC} \parallel +0.8480 \parallel T_{AC} \parallel$ T_{AD} : $\parallel T_{AD} \parallel$ W : -40

Se obtiene el siguiente sistema de ecuaciones:

De la ecuación (2):

$$0.4240 \| T_{AC} \| = 0.4240 \| T_{AB} \|$$

$$||T_{AC}|| = ||T_{AB}|| (4)$$

Al sustituir la ecuación (4) en la ecuación (3):

$$0.8480 \parallel T_{AB} \parallel + 0.8480 \parallel T_{AB} \parallel = 400$$

$$1.696 \| T_{AB} \| = 40$$

$$||T_{AB}|| = \frac{40}{1.696}$$

$$||T_{AB}|| = 23.58 \, \text{lb}$$

De la ecuación (4):

$$||T_{AC}|| = 23.58 \, \text{lb}$$

De la ecuación (1):

$$\parallel T_{AD} \parallel = 0.3180 \parallel T_{AB} \parallel + 0.3180 \parallel T_{AC} \parallel$$

$$||T_{AD}|| = 0.3180 (23.58 \text{ lb}) + 0.3180 (23.58 \text{ lb})$$

$$||T_{AD}|| = 15 \text{ lb}$$

Este ejercicio forma parte de una serie de ejercicios resueltos paso a paso acerca del tema de Estática de partículas, fuerzas en el espacio de la asignatura Mecánica Vectorial. El acceso a estos archivos está disponible a través de:

http://www.tutoruniversitario.com/